Skip to content

Two-Phase Heat Transfer

Nucleation superheat

Phase change: liquid -> gas / gas -> liquid

  • Homogeneous nucleation 均匀成核 (A-B')
  • Heterogeneous nucleation 异相成核 (A-B-C-D)

Specific volume = density1

Temperature-volume relation

Clausius-Clapeyron relation

Mechanical equilibrium:

(pbpl)πr2=σ2πr or Δp=pbpl=2σr
  • pb: Internal pressure in bubble
  • pl: Pressure outside the bubble
  • r: radius of bubble
  • σ: coefficient of surface tension 表面张力

[core] Clausius-Clapeyron relation b/w psat & Tsat (where hfg is Latent heat of phase change 相变潜热 / enthalpy of vaporization):

The Clausius-Clapeyron equation specifies the temperature dependencies of pressure, most importantly, vapor pressure, at a discontinuous phase transition b/w two phase of matter of a single contituent

(dpdT)sat =hfgTsat (νgνf)νgνf Saturated vapor dpgdTg=hfgTg(νg)pgνg=RTgdpgpg=hfgRTg2dTgln(pbpl)=hfgR(1Tb1Tsat )TbTsat =RTbTsat hfgln(pbpl)Tsat : Saturation temperature at plTb: Saturation temperature at pbTbTsat =RTbTsat hfgln(1+2σplr)

Superheat (=TbTsat  ) required to maintain a bubble

when 2σ/plr1,pbpl.RTb/pb=νbνfg .

TbTsat RTbTsat2σhfgpbr2σTsat νfghfg(1r)plpc

where pc is Critical pressure.

Superheat for homogeneous nucleation of water at p=0.1MPa:220C

Heterogeneous nucleation: dissolved gas & microcavities at surface

Pool boiling

  • Boiling curve: Heat-transfer regime of pool boiling
  • Critical heat flux: Linked with onset of pool fluidization (suspension of liquid by vapor stream)

Hydrodynamic instability:

  • Kelvin- Helmholtz instability: 2 fluid flow counterpart: critical heat flux =...
qcr=ρghfgjg=C1ρghfg[σ(ρfρg)gρg2]1/4

where C1=0.13.

pressure-Critical heat flux relation

Flow boiling

  • Heat transfer regime: Mass flow rate, fluids, geometry, heat flux magnitude and distribution
  • Dry-out type CHF: High quality
  • DNB (departure from nucleate boiling) type CHF (similar to CHF in pool boiling): Low quality

Enthalpy 焓 [J/kg] at z from inlet:

h=hl,in+4qwzDG

4qwzDG comes from

  1. The area of pipe wall: zπD
  2. The whole heat: ΔQ=qwzπD
  3. The enthalpy increase: ΔQ/W=ΔQ/(GπD2/4)=4qwzDG

Thermal equilibrium quality at z from inlet:

xeq=hhl,sathfg=hl,in+4qwzDGhl,sathfg
  • hl,sat: Saturated enthalpy
  • When h=hfg+hl,sat,xeq=1

For boiling curve:

  • single-phase flow: q=h(TwTsat)
  • The corner: (TwTsat)m1
  • 2-phase flow: q=h(TwTsat)m,m3

Subcooled boiling

Stages of void fraction
  1. Region I: Subcooled nucleate boiling (Onset of nucleate boiling, ZNB: mean or bulk temperature below Tsat)
  2. Region II: Subcooled nucleate boiling (Onset of significant void, ZD)
  3. Region III: Saturated boiling (xeq=0: since liquid does not reach saturation condition due to the bubble presence and non-equilibrium)
  4. Region IV: Saturated boiling (thermal equilibrium condition at ZE)
  • For ZD, that's Saha-Zuber correlation to determine
  • For the curve: profile-fit method

Net vapor generation (Bubble departure)

Net vapor generation: The point at which bubbles can depart from the wall before they suffer condensation (ZD)

在流体中,蒸汽的“产生”速度开始大于“凝结”速度,从而出现净增的蒸汽

  • Thermally controlled departure: The wall heat flux is balanced by heat removal due to liquid subcooling at ZD.
  • Hydrodynamically controlled departure: The bubble detachment is primarily the result of drag (or shear) force overcoming the surface tension force

Saha-Zuber correlation: (empirical) St=NuRePrPe=NuSt=GDncpfkf

xeq(ZD)={0.0022qDncpfkfhfgPe70000153.85qGhfgPe70000

For temperature:

TsatTbulk={0.0022qDnkfPe70000153.85qGcplPe70000Saha-Zuber correlation

Subcooled flow quality and void fraction

Profile-fit approach: Currently accepted approach for determining the flow quality in subcooled region

x(z)=xeq(z)xeq(ZD)exp[xeq(z)xeq(ZD)1]

The flow quality x(z):

  • =0 at ZD
  • approaches xeq(z) asymptotically as z increases
  • When xeq(z)=0,x(z)=1exeq(ZD)0.368xeq(ZD)

For quality:

xxeq
  • well-saturated boiling flow:
xxeq
  • Subcooled boiling flow:
x0,xeq<0

Using profile-fit approach to obtain xeq How to determine ZD: Profile-fit method

pump

Mission: prediction of void fraction for heat transfer, etc.

  1. To predict the void fraction α, the Drift-flux model is used (need x)

Drift-flux model:

α=jgC0(jg+jf)+vfg

where

jg=Gxfρg,jf=G(1xf)ρf

and xf is the flow quality

  • For HEM, α=jg/(jg+jf) and 20% overprediction
  1. Distribution parameter C0 and drift velocity vfg can be obtained by formulas in the last chapter
  2. To obtain the flow quality xf, Profile-fit approach (xfxeq) and OSV model (onset of significant void) are used (need xeq(z),xeq(ZD))
    1. To obtain xeq, Thermal equilibrium quality is used
    2. To obtain xeq(ZD), the Saha-Zuber correlation is used

Saturated Cooling

Heat transfer:

  • 1ϕ:q=h1ϕ(TwTbulk)
    • Nu=h1ϕDkf where kf is the thermal conductivity
    • Dittus-Boelton equation for 1ϕ convective heat transfer (Turbulent flow):Nu=0.023Re0.8Prm,m=0.3(cooling),0.4(heating)
    • Re=ρfjfD/μf where jf=G(1x)/ρf
  • 2ϕ:q=h2ϕ(TwTsat) (Saturated boiling flow)
    • h2ϕ=hNBnucleate boiling+hCforced convective flow(Chen correlation)

Boling incipience

Fourier's law:

q=klTrklTbTsatr

Clausius-Clapeyron relation:

Tw=Tsat+2σTsatvfghfg1r.

Thus

q=klhfg8σTsatvfg(TwTsat)2.

Quiz3

Water is injected with a velocity of 1.5 m/s into a uniformly heated vertical pipe with a diameter of 0.05 m and length of 10 m receiving a heat flux of 5×106 W/m2. Inlet pressure and temperature of water are 4.64 MPa and 25C. Saturation temperature, Tsat, at 4.64 MPa is 259C. Saturated liquid enthalpy, hl,sat, and enthalpy of vaporization, hfg, are 1132 kJ/kg and 1665 kJ/kg. Saturated liquid density and saturated steam density are 785 kg/m3 and 23.4 kg/m3. Enthalpy of water at 4.64 MPa and 25C is 123 kJ/kg. Density of the saturated liquid can be used as a good estimation of density of subcooled water. Other average fluid properties are Cpl=4980 J/kgK,kl=0.570 W/mK, μl=9.4×105 kg/(m s). Surface tension at the saturation pressure can be used approximately for the calculation (σ=0.0329 N/m).

  1. Calculate the mixture mass flux (unit in kg/m2s). In thr uniformly heated pipe:
G=ρfvf=785×1.5 kg/m2s=1177.5 kg/m2s.
  1. Calculate the enthalpy at 4 m from the pipe inlet (unit in kJ/kg).
h=hl,in+4qwzDG=(123+4×5×103×40.05×1177.5) kJ/kg1481.811 kJ/kg.
  1. Calculate the thermal equilibrium quality located at the 4 m from the pipe inlet. Thermal equilibrium quality is calculated as
xe(z)|z=4=h(z)|z=4hl,sathfg=1481.811113216650.210.
  1. Calculate the Peclet number for the inlet liquid.
Pe=GCplDkl=1177.5×4980×0.050.5705.143816×105
  1. Calculate the temperature for onset of significant void, TD, (unit in K). According to Saha-Zuber correlation, when Pe>70000:
TsatTD=153.85qGCpl=153.85×5×1061177.5×4980 K131.183 K

Thus TDTsat131.3 K(259+273.15131.183) K400.967 K

  1. Calculate the length at which onset of significant void occurs, ZD, (unit in m).
ZD=πDh24GCpl(TDTin)πDhqw=DhGCpl(TDTin)4qw1.507 m.
  1. Calculate the equilibrium quality at ZD,xe(ZD).
Based on Saha-Zuber correlation, when Pe>70000: (Not right while using this formula)xe(ZD)=153.85qGhfg=153.85×5×1061177.5×1665×1030.392.
h|z=ZD=hl,in+4qwZDDG(123+4×5×103×1.5070.05×1177.5) kJ/kg634.392 kJ/kgxe(ZD)=h|z=ZDhl,sathfg0.299.
  1. Calculate the quality at Z=2 m,x(Z=2 m). The quality is calculated based on the profile-fit approach:
x(z)|z=2 m=xe(z)|z=2 mxe(ZD)exp[xe(z)|z=2 mxe(ZD)1]

where

xe(z)|z=2 m=hl,in+4qz|z=2 mGDhl,sathfg0.198

Thus ::: details(Wrong answer in 7th leads to wrong answer here)

x(z)|z=2 m0.198(0.392)×exp[0.1980.3921]0.0411

:::

x(z)|z=2 m0.198(0.299)×exp[0.1980.2991]0.0153.
  1. Calculate the distribution parameter, C0, at Z=2 m. Given:
C0=β[1+(1/β1)b]b=(ρg/ρf)0.1β=(x/ρg)/(x/ρg+(1x)/ρf)

According to the given formula:

Wrong answerβ0.041123.4/(0.041123.4+10.0411785)0.590b=(23.4/785)0.10.704C00.590×[1+(1/0.5901)0.704]1.047
β0.015323.4/(0.015323.4+10.0153785)0.342b=(23.4/785)0.10.704C00.342×[1+(1/0.3421)0.704]0.884
  1. Calculate the void fraction at Z=2 m,α(Z=2 m). The void fraction is calculated by
α=jgC0j+vgj

where

Wrong answerjg=Gxρg1177.5×0.041123.4 m/s2.068 m/sjf=G(1x)ρf1177.5×(10.0411)785 m/s1.438 m/sj=jg+jf(2.068+1.438) m/s3.507 m/s.
jg=Gxρg1177.5×0.15323.4 m/s0.769 m/sjf=G(1x)ρf1177.5×(10.153)785 m/s1.477 m/sj=jg+jf(0.769+1.477) m/s2.246 m/svgj=2.9(Δρgσρf2)0.25=2.9×[(78523.4)×9.8×0.03297852]0.25 m/s0.410 m/s.

Thus

Wrong answerα0.7690.884×2.246+0.4100.507.
α2.0681.047×3.507+0.4100.321.

Released under the MIT License.