Skip to content

Two-Phase Heat Transfer

Nucleation superheat

Phase change: liquid -> gas / gas -> liquid

  • Homogeneous nucleation 均匀成核 (A-B')
  • Heterogeneous nucleation 异相成核 (A-B-C-D)

Specific volume = density1

Temperature-volume relation

Clausius-Clapeyron relation

Mechanical equilibrium:

(pbpl)πr2=σ2πr or Δp=pbpl=2σr
  • pb: Internal pressure in bubble
  • pl: Pressure outside the bubble
  • r: radius of bubble
  • σ: coefficient of surface tension 表面张力

Clausius-Clapeyron relation b/w psat & Tsat (where hfg is Latent heat of phase change 相变潜热 / enthalpy of vaporization):

The Clausius-Clapeyron equation specifies the temperature dependencies of pressure, most importantly, vapor pressure, at a discontinuous phase transition b/w two phase of matter of a single contituent

(dpdT)sat =hfgTsat (νgνf)νgνf Saturated vapor dpgdTg=hfgTg(νg)pgνg=RTgdpgpg=hfgRTg2dTgln(pbpl)=hfgR(1Tb1Tsat )TbTsat =RTbTsat hfgln(pbpl)Tsat : Saturation temperature at plTb: Saturation temperature at pbTbTsat =RTbTsat hfgln(1+2σplr)

Superheat (=TbTsat  ) required to maintain a bubble

when 2σ/plr1,pbpl.RTb/pb=νbνfg .

TbTsat RTbTsat2σhfgpbr2σTsat νfghfg(1r)plpc

where pc is Critical pressure.

Superheat for homogeneous nucleation of water at p=0.1MPa:220C

Heterogeneous nucleation: dissolved gas & microcavities at surface

Pool boiling

  • Boiling curve: Heat-transfer regime of pool boiling
  • Critical heat flux: Linked with onset of pool fluidization (suspension of liquid by vapor stream)

Hydrodynamic instability:

  • Kelvin- Helmholtz instability: 2 fluid flow counterpart: critical heat flux =...
qcr=ρghfgjg=C1ρghfg[σ(ρfρg)gρg2]1/4

where C1=0.13.

pressure-Critical heat flux relation

Flow boiling

  • Heat transfer regime: Mass flow rate, fluids, geometry, heat flux magnitude and distribution
  • Dry-out type CHF: High quality
  • DNB (departure from nucleate boiling) type CHF (similar to CHF in pool boiling): Low quality

Enthalpy 焓 [J/kg] at z from inlet [core]:

h=hl,in+4qwzDG

where:

  • qw: heat flux
  • z: height w.r.t. the inlet
  • D: diameter of pipe
  • G=ρgjg+ρfjf=ρmvm: mass flux

4qwzDG comes from

  1. The area of pipe wall: zπD
  2. The whole heat: ΔQ=qwzπD
  3. The enthalpy increase: ΔQ/W=ΔQ/(GπD2/4)=4qwzDG

definition: Thermal equilibrium

Two physical systems are in thermal equilibrium if there is no net flow of thermal energy between them when they are connected by a path permeable to heat (From wikipedia)

definition: Thermal equilibrium quality

Thermal equilibrium quality: ratio of the actual enthalpy of a fluid mixture to the enthalpy if it were completely vaporized, assuming the mixture is in thermal equilibrium at the local pressure.

Thermal equilibrium quality at z from inlet [core]:

xeq=hhl,sathfg=hl,in+4qwzDGhl,sathfg
  • hl,sat: Saturated enthalpy
  • hfg: enthalpy of vaporization
  • When h=hfg+hl,sat,xeq=1

For boiling curve:

  • single-phase flow: q=h(TwTsat)
  • The corner: (TwTsat)m1
  • 2-phase flow: q=h(TwTsat)m,m3

Subcooled boiling

Stages of void fraction
  1. Region I: Subcooled nucleate boiling (Onset of nucleate boiling (核态沸腾起始点), ZNB: mean or bulk temperature below Tsat)
  2. Region II: Subcooled nucleate boiling (Onset of significant void (显着空洞), ZD)
  3. Region III: Saturated boiling (xeq=0: since liquid does not reach saturation condition due to the bubble presence and non-equilibrium)
  4. Region IV: Saturated boiling (thermal equilibrium condition at ZE)
  • For ZD, that's Saha-Zuber correlation to determine
  • For the curve: profile-fit method

Net vapor generation (Bubble departure)

Net vapor generation: The point at which bubbles can depart from the wall before they suffer condensation (ZD)

在流体中,蒸汽的“产生”速度开始大于“凝结”速度,从而出现净增的蒸汽

  • Thermally controlled departure: The wall heat flux is balanced by heat removal due to liquid subcooling at ZD.
  • Hydrodynamically controlled departure: The bubble detachment is primarily the result of drag (or shear) force overcoming the surface tension force

Saha-Zuber correlation: (empirical)

At first, introduce Peclet number [core]:

St=NuRePrPe=NuSt=GDnCpfkf

where:

  • Cpf: Saturated liquid isobaric heat capacity
  • kf: Saturated liquid thermal conductivity
no usexeq(ZD)={0.0022qDncpfkfhfgPe70000153.85qGhfgPe70000

For temperature:

TsatTD={0.0022qDnkfPe70000153.85qGcplPe70000

and ZD is calculated as:

ZD=πDh24GCpl(TDTin)πDhqw=DhGCpl(TDTin)4qw
  • 分子:将总质量流量的流体从 Tin 显热加热到 TD 所需要的总功率
  • 分母:单位长度加热功率
Saha-Zuber correlation

Subcooled flow quality and void fraction

Profile-fit approach: Currently accepted approach for determining the flow quality in subcooled region [core]

x(z)=xeq(z)xeq(ZD)exp[xeq(z)xeq(ZD)1]

The flow quality x(z):

  • =0 at ZD
  • approaches xeq(z) asymptotically as z increases
  • When xeq(z)=0,x(z)=1exeq(ZD)0.368xeq(ZD)

For quality:

xxeq
  • well-saturated boiling flow:
xxeq
  • Subcooled boiling flow:
x0,xeq<0

Using profile-fit approach to obtain xeq How to determine ZD: Profile-fit method

pump

Mission: prediction of void fraction for heat transfer, etc.

  1. To predict the void fraction α, the Drift-flux model is used (need x)

Drift-flux model:

α=jgC0(jg+jf)+vfg

where

jg=Gxfρg,jf=G(1xf)ρf

and xf is the flow quality

  • For HEM, α=jg/(jg+jf) and 20% overprediction
  1. Distribution parameter C0 and drift velocity vfg can be obtained by formulas in the last chapter
  2. To obtain the flow quality xf, Profile-fit approach (xfxeq) and OSV model (onset of significant void) are used (need xeq(z),xeq(ZD))
    1. To obtain xeq, Thermal equilibrium quality is used
    2. To obtain xeq(ZD), the Saha-Zuber correlation is used

Saturated Cooling

Heat transfer:

  • 1ϕ:q=h1ϕ(TwTbulk)
    • Nu=h1ϕDkf where kf is the thermal conductivity
    • Dittus-Boelton equation for 1ϕ convective heat transfer (Turbulent flow):Nu=0.023Re0.8Prm,m=0.3(cooling),0.4(heating)
    • Re=ρfjfD/μf where jf=G(1x)/ρf
  • 2ϕ:q=h2ϕ(TwTsat) (Saturated boiling flow)
    • h2ϕ=hNBnucleate boiling+hCforced convective flow(Chen correlation)

Boling incipience

Fourier's law:

q=klTrklTbTsatr

Clausius-Clapeyron relation:

Tw=Tsat+2σTsatvfghfg1r.

Thus

q=klhfg8σTsatvfg(TwTsat)2.

Quiz3

Water is injected with a velocity of 1.5 m/s into a uniformly heated vertical pipe with a diameter of 0.05 m and length of 10 m receiving a heat flux of 5×106 W/m2. Inlet pressure and temperature of water are 4.64 MPa and 25C. Saturation temperature, Tsat, at 4.64 MPa is 259C. Saturated liquid enthalpy, hl,sat, and enthalpy of vaporization, hfg, are 1132 kJ/kg and 1665 kJ/kg. Saturated liquid density and saturated steam density are 785 kg/m3 and 23.4 kg/m3. Enthalpy of water at 4.64 MPa and 25C is 123 kJ/kg. Density of the saturated liquid can be used as a good estimation of density of subcooled water. Other average fluid properties are Cpl=4980 J/kgK,kl=0.570 W/mK, μl=9.4×105 kg/(ms). Surface tension at the saturation pressure can be used approximately for the calculation (σ=0.0329 N/m).

  1. Calculate the mixture mass flux (unit in kg/m2s). In the uniformly heated pipe:
G=ρl,invl,in=785×1.5 kg/m2s=1177.5 kg/m2s.

11191236

  1. Calculate the enthalpy at 4 m from the pipe inlet (unit in kJ/kg).
h=hl,in+4qwzDG=(123+4×5×103×40.05×1177.5) kJ/kg1481.811 kJ/kg.

14071555

  1. Calculate the thermal equilibrium quality located at the 4 m from the pipe inlet. Thermal equilibrium quality is calculated as
xe(z)|z=4=h(z)|z=4hl,sathfg=1481.811113216650.210.

0.2

  1. Calculate the Peclet number for the inlet liquid.
Pe=GCplDkl=1177.5×4980×0.050.5705.143816×105

488680540120

  1. Calculate the temperature for onset of significant void, TD, (unit in K). According to Saha-Zuber correlation, when Pe>70000:
TsatTD=153.85qGCpl=153.85×5×1061177.5×4980 K131.183 K

Thus TDTsat131.3 K(259+273.15131.183) K400.967 K

381421

  1. Calculate the length at which onset of significant void occurs, ZD, (unit in m).
ZD=πDh24GCpl(TDTin)πDhqw=DhGCpl(TDTin)4qw1.507 m.

1.431.59

  1. Calculate the equilibrium quality at ZD,xe(ZD).
Based on Saha-Zuber correlation, when Pe>70000: (Not right while using this formula)xe(ZD)=153.85qGhfg=153.85×5×1061177.5×1665×1030.392.
h|z=ZD=hl,in+4qwZDDG(123+4×5×103×1.5070.05×1177.5) kJ/kg634.392 kJ/kgxe(ZD)=h|z=ZDhl,sathfg0.299.

0.3130.283

  1. Calculate the quality at Z=2 m,x(Z=2 m). The quality is calculated based on the profile-fit approach:
x(z)|z=2 m=xe(z)|z=2 mxe(ZD)exp[xe(z)|z=2 mxe(ZD)1]

where

xe(z)|z=2 m=hl,in+4qz|z=2 mGDhl,sathfg0.198

Thus

(Wrong answer in 7th leads to wrong answer here)x(z)|z=2 m0.198(0.392)×exp[0.1980.3921]0.0411
x(z)|z=2 m0.198(0.299)×exp[0.1980.2991]0.0153.

0.01430.0158

  1. Calculate the distribution parameter, C0, at Z=2 m. Given:
C0=β[1+(1/β1)b]b=(ρg/ρf)0.1β=(x/ρg)/(x/ρg+(1x)/ρf)

According to the given formula:

Wrong answerβ0.041123.4/(0.041123.4+10.0411785)0.590b=(23.4/785)0.10.704C00.590×[1+(1/0.5901)0.704]1.047
β0.015323.4/(0.015323.4+10.0153785)0.342b=(23.4/785)0.10.704C00.342×[1+(1/0.3421)0.704]0.884

0.8370.925

  1. Calculate the void fraction at Z=2 m,α(Z=2 m).

The void fraction is calculated by

α=jgC0j+vgj

where

Wrong answerjg=Gxρg1177.5×0.041123.4 m/s2.068 m/sjf=G(1x)ρf1177.5×(10.0411)785 m/s1.438 m/sj=jg+jf(2.068+1.438) m/s3.507 m/s.
jg=Gxρg1177.5×0.15323.4 m/s0.769 m/sjf=G(1x)ρf1177.5×(10.153)785 m/s1.477 m/sj=jg+jf(0.769+1.477) m/s2.246 m/svgj=2.9(Δρgσρf2)0.25=2.9×[(78523.4)×9.8×0.03297852]0.25 m/s0.410 m/s.

Thus

Wrong answerα0.7690.884×2.246+0.4100.507.
α2.0681.047×3.507+0.4100.321.

0.3020.334

Quiz4

Liquid water with the mass flux (G) of 2000 kg/m2/s is injected into a uniformly heated vertical pipe at pressure ( P ) condition of 15.5 MPa and inlet temperature ( T ) of 300C. The pipe has the diameter (Dh) of 0.05 m and height of 15 m . It is heated by the heat source through the outside wall with a heat flux (qw) of 8×105 W/m2.

Key information are given below:

  • Mass flux: G=2000 kg/(m2s);
  • Pressure condition: P=15.5MPa;
  • Inlet temperature condition: Tin =300C;
  • Saturation temperature: Tsat =345C;
  • Liquid enthalpy at inlet: hin=1338 kJ/kg;
  • Saturated liquid enthalpy: hsat,f=1623 kJ/kg;
  • Saturated gas enthalpy: hsat,g=2599 kJ/kg;
  • Latent heat: hfg=976 kJ/kg;
  • Saturated liquid density: ρf=598 kg/m3;
  • Saturated liquid dynamic viscosity: μf=6.88×105 Pa s;
  • Saturated liquid thermal conductivity: kf=0.452 W/m/K;
  • Saturated liquid isobaric heat capacity: Cpf=8.74 kJ/kg/K;
  • Saturated gas density: ρg=101 kg/m3;
  • Saturated gas dynamic viscosity: μg=2.31×105 Pa s;
  • Steam-water surface tension: σ=0.0047N/m;
  • Steel-water contact angle: ϕs=38.

Assumptions: (1) Ignore the pressure loss in two-phase mixing section. (2) Air and water fluid compressibility is negligible. (3) Water properties change with temperature is negligible.

  1. Assume that water properties do not vary significantly in single-phase flow section. Calculate the liquid convective heat transfer coefficient using the Dittus-Boelter equation.
Nuf=0.023Ref0.8Prf0.4Ref=(GDh)/μfPrf=(Cpfμf)/kfNuf=(hfDh)/kf

The answer of hf should be given in W/(m2K).

Answer:

Nuf=0.023Ref0.8Prf0.4=0.023(GDhμf)0.8(Cpfμfkf)0.4=hfDhkfhf=0.023kfDh(GDhμf)0.8(Cpfμfkf)0.41.98340×104 W/(m2K).

1881020790

  1. What is the temperature difference between the wall temperature and mean bulk liquid temperature (wall super heat [C])?
qx=hΔT

The answer of ΔT should be given in C.

Answer:

qw=hfΔTΔT=qwhf40.335C.

38.442.4

  1. Determine the temperature for the onset of nucleate boiling, TONB, using Basu et al. (2004) correlation.
ΔTONB=2F(ϕs)(σTsatqwρghfgkf)0.5

where

F(ϕs)=1exp[(πϕs180)30.5(πϕs180)],ϕs=38

Tsat in the correlation should be used in the unit K. The answer of TONB should be given in C.

Answer:

ΔTONB=TONBTsat=2F(ϕs)(σTsatqwρghfgkf)0.5TONB=Tsat+2F(ϕs)(σTsatqwρghfgkf)0.5

where

F(ϕs)|ϕs=38=1exp[(πϕs180)30.5(πϕs180)]0.464.

Thus

TONB345.696C.

329363

  1. Calculate the temperature of significant void, TD.
Pe=(GDhCpf)/kfTsatTD=0.0022((qwDh)/kf),Pe<7×104TsatTD=154(qwGCpf),Pe>7×104

The answer of TD should be given in C.

Answer:

Pe=(GDhCpf)/kf1.9336283×106.

Thus

TsatTD=154(qwGCpf)TD=Tsat154(qwGCpf)337.952C.

321355

  1. Calculate the length for the onset of significant void, ZD.
ZD=πDh24GCpf(TDTin)πDhqw

The answer of ZD should be given in m .

Answer:

ZD=πDh24GCpf(TDTin)πDhqw=DhGCpf(TDTin)4qw10.366 m.

9.8810.9

  1. In another scenario, assume that the heat flux is unknown and the wall temperature is fixed at 370C. Chen's correlation is used to calculate two-phase heat transfer coefficient and heat flux at x=0.2. Saturation pressure at 370C is 21.0 MPa . Calculate the nucleate boiling heat transfer coefficient in Chen's correlation hNB.
hNB=S×0.00122[(k0.79Cp0.45ρ0.49)fσ0.5μf0.29hfg0.24ρg0.24]ΔTsat0.24ΔP0.75

where

S=11+2.53×106Re1.17Re=RefF1.25Ref=G(1x)DhμfF=1 for 1Xtt<0.1F=2.35(0.213+1Xtt)0.736 for 1Xtt>0.1Xtt=(1xx)0.9(ρgρf)0.5(μfμg)0.1ΔTsat=TwTsatΔP=P(Tw)P(Tsat)

The answer of hNB should be given in W/(m2 K).

Answer:

ΔTsat=TwTsat=(370345)C=25CΔP=P(Tw)P(Tsat)=(21.015.5) MPa=5.5×106 PaXtt|x=0.2=(1xx)0.9(ρgρf)0.5(μfμg)0.1|x=0.21.5961Xtt0.617>0.1F=2.35(0.213+1Xtt)0.7362.066Ref=G(1x)Dhμf1.163×106Re=RefF1.252.880×106S=11+2.53×106Re1.170.0108hNB=S×0.00122[(k0.79Cp0.45ρ0.49)fσ0.5μf0.29hfg0.24ρg0.24]ΔTsat0.24ΔP0.756700.441 W/(m2K).

64077081

  1. Calculate the convective boiling heat transfer coefficient in Chen's correlation hc. Flow conditions are the same as in Question 6.
hc=0.023Ref0.8Prf0.4kfDhF

The answer of hc should be given in W/(m2 K).

Answer:

hc=0.023Ref0.8Prf0.4kfDhF34279.827 W/(m2K).

3239535805

  1. Calculate the total boiling heat transfer coefficient in Chen's correlation h2ϕ.
h2ϕ=hNB+hc

The answer of h2ϕ should be given in W/(m2 K).

Answer:

h2ϕ=hNB+hc40980.268 W/(m2K).

3876042840

  1. Calculate the saturation boiling heat flux using Chen's correlation and temperature given in Question 6.
qw=h2Φ(TwTsat)

The answer of qw should be given in W/m2.

Answer:

qw=h2Φ(TwTsat)=h2Φ(370345) K1024506.694 W/m2.

9690001071000

  1. Assume that the liquid velocity is zero (pool conditions), calculate the critical heat flux using Zuber's correlation:
qcr=ρgjghfg

where the vapor velocity leading to the onset of fluidization jg is given by:

jg=0.13[σ(ρfρg)gρg2]1/4

The answer of qcr should be given in W/m2.

Answer:

jg=0.13[σ(ρfρg)gρg2]1/40.0283 m/sqcr=ρgjghfg2789163.270 W/m2.

26505002929500

Released under the MIT License.